
Real-time Rigid Body Simulation Based on Volumetric Penalty Method

Shoichi HASEGAWA
Precision and Intelligence Laboratory

Tokyo Institute of Technology
4259 Nagatsuta-cho, Midori-ku, Yokohama, Japan

hase@hi.pi.titech.ac.jp

Nobuaki FUJII
nfujii@hi.pi.titech.ac.jp

Yasuharu KOIKE
koike@pi.titech.ac.jp

Makoto SATO
msato@pi.titech.ac.jp

Abstract

This paper proposes a new method for real-time rigid
body simulations based on a volumetric penalty method.
The penalty method, which employs spring-damper model,
is a simple and useful method for real-time simulation of
multi-bodies. However, simple penalty method cannot han-
dle face-face contact, because simple penalty method can-
not find application point of reflection force.

We suppose distributed small spring-damper model to
solve the problem. We analyze intersecting part of bodies
and integrate forces and torques from distributed spring-
damper models. We implement the simulator and compare
our simulator with simple penalty method. It showed that
our simulator solve the face-face contact problem. In ad-
dition, we attach haptic interface to the simulator for inter-
action. It shows that we were able to interact with virtual
world by haptic interfaces.

1. Introduction

This paper proposes novel real-time rigid body motion
simulator based on volumetric penalty method, which has
stable update cycle.

Recent progress of computer technology encourages de-
velopment of applications, which create and use virtual
worlds. Natural interactions between users and virtual
worlds are important to extend application of the virtual
worlds. Haptic interfaces display haptic sensation as a re-
sponse of touch. Therefore, haptic interfaces help natural
manipulation of virtual object and extend application area
of virtual world. For example, Nahvi et al.[1] created simple
mechanism in the virtual world to aid the design process. In
their system, the user can manipulate the mechanism with a
haptic interface.

In such systems, the interaction of the user must be re-
flected to the virtual world in real-time. Therefore, the sys-
tem requires real-time update of virtual world.

On the other hand, objects in the real world obey laws
of motion. Simulations of laws of motion create natural
motion of virtual object. Therefore, we develop a real-time
rigid body simulator with stable update rate.

2. Background

Baraff [2] [3] proposes analytical methods, which treats
contacts as constraints. His method solves contact forces,
which prevent penetration, regarding momentum conserva-
tion law. His method processes multi-contacts at once and
the time step of simulation can be constant. Therefore, his
method can be used for real-time simulator like Open Dy-
namics Engine [4]. However, Baraff’s method takes O(n3)
(where n represents number of contacts) computation time
to solve the contact forces. Therefore, when many contacts
occur at the same moment, the computation takes a lot of
time. Therefore, Baraff’s method is not suitable for simula-
tors for haptic displays.

Mirtich [5] proposes impulse-based simulations. His
method searches the time of the impact rather than treat-
ing concurrent impacts. In his method, individual steps of
the simulation don’t require much computation, but when
many collisions occur within a short period, the simulation
steps become very small. Therefore, sometimes the simu-
lation speed becomes very slow. Therefore, it is difficult to
create real-time simulator with Mirtich’s method.

Chang and Colgate [6] proposes real-time impulse-based
simulation for haptic display. In their simulator, the time
step is constant and the simulation speed is enough for hap-
tic display. However, their simulator is two-dimensional
and has a problem in face-face contact.



McKenna and Zeltzer[7] and Keller et al. [8] calcu-
lates contact forces from spring-damper models. In these
method, a contact force calculates from the amount of pene-
tration (= penalty). Therefore, these method called ‘penalty
method’. Penalty methods are simple and useful method for
real-time applications. Penalty methods put multiple spring
and damper models for multiple contact points and solves
multiple contact forces at once. Because the contact force
is calculated from spring-damper model directly, penalty
methods take computation time of liner order. Therefore,
penalty methods are suitable for simulators with haptic dis-
plays.

Baraff [2] wrote that penalty methods for rigid bodies are
often computation-ally expensive, give only approximate
results, and may require adjustments for different simula-
tion conditions.

However, for a real-time simulation, small computation
time for each time step is much more important than total
computation time and the adjustments for simulation condi-
tions can be automated. In addition, the adjustment of the
condition of the simulation such as a spring-coefficient can
be automated to a certain extent by using the information
such as the mass of the object . Moreover, Baraff’s method
gives also approximate results, because his method does not
regard the reflection coefficient.

Above is the reason why we choose the penalty method.
When faces of objects parallelly contacts each other, pre-

vious penalty method can’t decide the position of the appli-
cation point on which penalty force acts.

In this paper, we integrate penalty and its moment over
the contact area. The integrated penalty and moment tells
us the position of the application point.

3. Proposing Simulator

Motions of rigid bodies are represented by the initial
state and equation of motion. Information of a rigid body
such as position and velocity can be calculated by numerical
integration of equation of motion from the initial state.

The term of external force of equation of motion changes
the motion of the object. There are several external forces,
which affect the motions of rigid bodies such as:

• Forces from fields such as gravity or air resistance.

• Forces from contacts of objects.

Forces from fields can be calculated directly from the nature
of the virtual space. On the other hand, to determine the
forces from the contacts, we have to detect the contact state
of objects and calculate generated force from the contacts.

When two rigid bodies contact each other on some points
or regions, each rigid body receives forces from some points

or regions. Because the motion of a rigid body can be repre-
sented by translation and rotation, these forces can be rep-
resented by a translating force and a rotating force.

3.1. Problem of previous penalty methods

Previous penalty methods [7] [8] consider that contacts
always occur on a point and apply penalty force on that
point. These method does not consider a contact on large
regions such as a contact of cube on a floor.

Terzopoulos et al. [9] samples many points on the sur-
faces of objects and calculate penalty force for each sam-
pled points. Their method can treat large contact regions.
However, their method requires a lot of computation time
and is not suitable for real time simulators. Snyder et
al. [10] formulated face-face contact problem of implicit
curved surfaces into minimization problem with multiple
solutions, and solved it with Interval Newton Method. How-
ever, their method doesn’t work in real time.

To illustrate the problem, we’d like to take an example.
Let’s consider a simple penalty method, which put spring-
damper model on the most penetrating point and a virtual
world where a cube is on a floor. When the cube contacts
floor, one of the vertices of the cube, which penetrates most
to the floor, gets the penalty-force from the floor. Then,
the cube begins to rotate and the most penetrating point
changes. Therefore, the cube always rotates a little and does
not stop (Fig.1). Keller et al. [8] points out this problem.

Figure 1. Problem of simple penalty method

3.2. Proposing penalty method

To calculate the force and the moment from the con-
tact, Our method supposes that small spring-damper mod-
els distribute on surfaces of objects. our method analyses
the shape of the intersecting part of two contact object and
integrate the force and moment generated by the distributed
small spring-damper models(Fig.2).

Figure 2. Solution by our method



4. Implementation

Our simulator detects contacts, analyses shape of inter-
secting part, and integrate penalty forces. In this section,
we’ll explain the details of these operations.

4.1. Contact analysis

Our simulator represents shapes of objects by convex
polyhedrons. Because there are efficient algorithms for con-
vex polyhedron to detect the contact and analyze the shape
of the intersecting part. Objects, which have non-convex
shape, can be represented by composition of convex poly-
hedrons.

There are some methods for contact detection [14] [15]
[12]. We choose GJK algorithm [12] for contact detection,
because we need a point located on the intersecting part of
two convex. GJK algorithm finds closest points of two sep-
arate convex, or a point located on the intersecting part of
two intersecting convex. SOLID [13] is an implementation
of GJK algorithm. We use SOLID for the contact detection.

4.2. Analysis of intersecting part

Our simulator analyses intersecting part of objects. Be-
cause the objects are represented by convex polyhedrons,
the intersecting part is represented by the common part of
two convex polyhedrons.

Muller and Preparata [17] proposes an algorithm, which
seeks the faces and vertices of common part from the planes
of the convexes and a point located in the common part.
Following is outline of their algorithm (Fig.4). Their al-
gorithm represents convexes by half space representations.
Half space representation is common part of half spaces,
which represented by planes. The concatenation of two
half-space representations results in the intersection of the
two convex polyhedrons. However, the concatenated repre-
sentation has redundant planes. Therefore, we have to find
the minimum set of the planes, which represents the inter-
section part. To find the minimum set of the planes, their
algorithm transforms planes via dual transformation. Dual
transformation is a transformation which transform a vertex
(a, b, c) into a face (ax + by + cz = 1) and a face into a
vertex (Fig.3). After the dual transformation, the problem
of the finding of the minimum set of the planes results in a
convex hull problem, which find the minimum convex from
the vertices. There are fast algorithms to solve convex hull
problem. Their algorithm transforms convex hull via dual
transformation again. Then, the convex hull is transformed
into the intersecting part. Now, we got the vertices and faces
of the intersection.

���������	
����
���

d
d

1O O

Figure 3. Dual transformation

Dual transform

Vertex of
intersection

Half space
representation

Dual transform

Two convex polyhedrons
and a point in common part

Figure 4. Common part of two convex poly-
hedrons

4.3. Contact normal estimation

Our simulator estimates contact normals before the cal-
culation of penalty force. The faces of intersecting part of
two convex polyhedrons A and B come from one of the con-
vex polyhedron A or B. We sum the face normals over the
faces from each convex polyhedron, regarding the area of
each face. The faces are triangles or can be divided into
triangles. We estimate the contact normal n as following:

n =
∑

triangles on A(p3 − p1) × (p2 − p1)
−∑

triangles on B(p3 − p1) × (p2 − p1) (1)

(pi represents position of the vertex i on the triangle.)



4.4. Integration of the penalty

Now we got the faces of intersecting part and contact
normals. Next, we integrate penalty and its moment over
the intersecting part to calculate the force and torque. Be-
cause we suppose distributed linear spring-damper models,
the penalties are proportional to the depth of the intersect-
ing part. The depth of intersecting part is height of upper
bound minus height of lower bound. Therefore, we can cal-
culate integration of penalty and its moment from the in-
tegration of height of upper bound minus height of lower
bound (Fig.5). In addition, the boundary consists of trian-

� �

Upper bound Lower boundIntersecting part

Figure 5. Upper bound and lower bound

gles. Therefore, we integrate the height for each triangle
(Fig.6). We calculate the height of each vertex of the trian-

h

h+hb

h+ha
a

b
o

h+hb

h+ha ph

Figure 6. Triangular decomposition and nota-
tion

gle and integrate the height over the triangle.
Following are integrations of the penalty and its moment

over a triangle. p, p + a and p + b represents position of
vertices. h, h+ha and h+hb represents height of each ver-
tices from certain plane whose normal is parallel to contact
normal (Fig.6).

P =
∫ 1

s=0

∫ 1−s

t=0

(h + sha + thb)a × b dtds (2)

= (h +
1
3
ha +

1
3
hb)n (3)

M =
∫ 1

s=0

∫ 1−s

t=0

(p + sa + tb)

×((h + sha + thb)a × b)dtds (4)

= p × P + a × n(
1
3
h +

1
6
ha +

1
12

hb)

+b × n(
1
3
h +

1
12

ha +
1
6
hb) (5)

4.5. Setting of spring coefficient

We need penalty amount as a value, which is propor-
tional to the penetration depth to apply spring coefficient.
However the penalty P in section 4.4 is proportional to the
volume of penetration. Therefore, we project the intersect-
ing part on a plane whose normal is parallel to the contact
normal and integrate projection area. Then we divide the
penalty P and its moment M by the integrated area.

In the penalty method, a stiffer spring requires a smaller
time step. For real-time applications, we can’t choose time
steps smaller than the computation time. Therefore, we
choose spring stiffness from the time step and mass of the
object [18]. The equation of motion of the spring mass
damper system is

mẍ + bẋ + kx = 0 (6)

The oscillation cycle is T = 2π
√

m/k. To observe this
oscillation, a sampling period of smaller than T/2 is neces-
sary. Therefore, the time step must be at least smaller than
T/2 for the simulation of the system.

Regarding this, we choose the spring coefficient k as:

m = m1m2/(m1 + m2) (7)

k =
π2m

(8T )2
(8)

where m1 or m2 represents mass of each object, T repre-
sents time step of the simulation.

4.6. Friction

Handling of friction is one of the most difficult prob-
lems for analytical methods. In some configuration, it be-
comes a NP-complete class problem [19]. On the other
hand, penalty methods can easily treat the problem [20].

We can estimate the position of the application point
where the penalty force acts from the penalty force and mo-
ment, . Therefore, we can choose the application point as
the application point of the friction force.

We use a spring-damper model for static and dynamic
frictions. When two objects contact each other initially, we
put a spring-damper model to the application point of the
penalty force(Fig.7-1). The anchors of the spring-damper
model connect to two objects. The spring extends when
the object is moved (Fig.7-2). Then we move the position
of the spring-damper model to the application point of the
penalty force. Then the spring gives the force to the appli-
cation point of the penalty force(Fig.7-3). The procedure is
repeated during the contact.

The friction force is given from this spring-damper
model. If the force from the spring-damper model exceeds
the limitation of the static friction (ffriction < µ0fnormal),



we move the anchors of the spring to shrink the spring and
to decrease the friction force to the dynamic friction force
(ffriction = µfnormal).

Application point of penalty force Anchor of friction spring

1. First contact 2. Move object 3.Update anchor

Figure 7. Procedure of the friction calculation

5. Evaluation

We do an experiment to evaluate if our simulator can
treat face-face contact. Then show some example for our
simulator.

5.1. Procedure of the experiment

We prepare two simulator; one is our simulator and the
other is a simple simulator, which we suppose in the sec-
tion section 3.1. We simulate the motion of a cube dropped
on a floor by each simulator. Then, we measure angular
momentum of the cube around an axis. Following is other
conditions of the simulation:

• The cube gets forces only from gravity and reflection.

• The floor does not move.

• The time step is 10ms.

• The size of cube is 2mx2mx2m.

• The mass of cube is 1kg.

• The cube is located above the floor and slanted 0.1 ra-
dian.

Fig.8 shows the initial state of the virtual world.

Measure the angular momentum

2m�2m�2m
gravity:9.8m/s

0.1rad

Figure 8. Simulated virtual world

5.2. Result of the experiment

The cube in our simulator stops soon. On the other hand,
the cube in simple simulator vibrates and does not stop.
Fig.9 shows the angular momentum of each cube. The an-
gular momentum vibrates and does not converge on the sim-
ple simulator. On the other hand, the vibration of the cube
stops after 70 steps on our simulator.

-0.05

0 100 200
-0.1

0

0.05

Proposed method
A

ng
ul

ar
M

om
en

tu
m

[N
m

]

0 100 200
-0.1

-0.05

0

0.05

��������	�
��� [10ms]

Simple method

��������	�
��� [10ms]

A
ng

ul
ar

M
om

en
tu

m
[N

m
]

Figure 9. Angular momentum of the cube
around the Z-axis

5.3. Simulation examples

Fig.10 is screen shot of simple and our simulator simu-
lating same virtual world that have 4 blocks and a floor. The
vibration of simple simulator collapses the piled block. Our
simulator managed the update rate of 200Hz in this simula-
tion on a PC with CPU of Pentium III 700MHz.



Simple Simulator Our Simulator

1step

300step

600step

900step

Figure 10. Simulation of piled blocks

5.4. Interaction with haptic interface

We attach a string-based haptic interface [21][22] to in-
teract with the virtual world in our simulator. We simulate
two virtual environment, four piled blocks (Fig.11) and six
bricks (Fig.12). In both cases, the simulation and haptic
control is done at 200Hz, while graphics are rendered at
20Hz. The pointer of the haptic interface is associated to a
cube in the virtual world. The posture of the cube is set to
the posture of the pointer of the haptic interface. The force
and torque, which the cube receives, is presented to the user
via the haptic interface. Thus, the user can interact with
blocks through the associated cube. Because the simulator
computes both force and torque, user can feel the 6-DOF
force feedbacks with a 6-DOF device.

6. Conclusion

We pointed out that previous penalty methods do not
consider face-face contact and the vibrations of objects do
not stop in the simple simulator, which put spring-damper
model on the most penetrating point. Then we proposed
a new penalty method, which integrate penetration over the
intersecting part and solved the problem of previous penalty
methods.

0.0sec

0.5sec

1.0sec

1.5sec

2.0sec

2.5sec

Pointer

Figure 11. Interaction with haptic interface:
Piled blocks

We did an experiment, which showed the effect of our
method. In addition, we attached haptic interface to the sim-
ulator for interactions. We were able to interact with virtual
world by haptic interface.

References

[1] A Nahvi, D. Nelson, J. Hollerbach, D. Johnson,
“Haptic Manipulation of Virtual Mechanisms from
Mechanical CAD Designs” Proc. IEEE International
Conference on Robotics and Automation, pp.375-380,
1998

[2] D. Baraff, “Analytical methods for dynamic sim-
ulation of non-penetrating rigid bodies” Computer
Graphics 23(3), pp.223-232, 1989

[3] D. Baraff, “Fast contact force computation for non-
penetrating rigid bodies” Proc. SIGGRAPH 94, pp.23-
34, 1994

[4] Russell L. Smith, “Intelligent Motion Control with
an Artificial Cerebellum” PhD Thesis, University of
Auckland, New Zealand, 1998

[5] Brian Mirtich, “Impulse-based Dynamic Simulation
of Rigid Body Systems,” Ph.D. thesis, University of
California, Berkeley, December, 1996



0s

1.0s

200ms

2.0s

0.5s

1.5s

2.5s

3.0s

3.5s

Pointer

Figure 12. Interaction with haptic interface:
Bricks

[6] B. Chang, J. Colgate, “Real-time Impulse-based Sim-
ulation of Rigid Body Systems for Haptic Display”
Proc. ASME International Mechanical Engineering
Congress and Exhibition, 1997

[7] M. McKenna and D. Zeltzer, “Dynamic simulation of
autonomous legged locomotion”, Computer Graphics
(SIGGRAPH 90), Vol. 24, pp. 29-38, August 1990.

[8] H. Keller, H. Stolz, A. Ziegler: Virtual Mechan-
ics : Simulation and Animation of Rigid Body Sys-
tems, http://citeseer.nj.nec.com/keller94virtual.html,
38 pages, 1993

[9] D. Terzopoulos, J. Platt, A. Barr, K. Fleischer: “Elas-
tically deformable models”, Computer Graphics, Vol.
21 (SIGGRAPH 87), pp.205-214,1987

[10] John M. Snyder, Adam R. Woodbury, Kurt Fleis-
cher, Bena Currin, Alan H. Barr: “Interval Methods
for Multi-Point Collisions between Time-Dependent
Curved Surfaces” Proceedings of SIGGRAPH 1993,
pp. 321-334, 1993.

[11] M. Moore, J. Wilhelms: “Collision Detection and Re-
sponse for Computer Animation”, Proc. SIGGRAPH
88, pp.289-298, 1988

[12] E. G. Gilbert, D. W. Johnson, S. S. Keerthi: “A fast
procedure for computing the distance between com-
plex objects in three-dimensional space” IEEE Journal
of Robotics and Automation 4(2), pp.193‐203, 1988

[13] G. van den Bergen: “A Fast and Robust GJK Im-
plementation for Collision Detection of Convex Ob-
jects.”, Journal of Graphics Tools 4(2), pp.7-25, 1999

[14] J. Cohen, M. Lin, D. Manocha, and K. Ponamgi: “I-
COLLIDE: An Interactive and Exact Collision Detec-
tion System for Large-Scaled Environments”, Proc.
ACM Symposium on Interactive 3D Graphics, pp.
189-196, 1995

[15] B. Mirtich: “V-Clip Collision Detection Library”,
MERL

[16] Brian Mirtich: “Rigid Body Contact: Collision De-
tection to Force Computation”, Workshop on Contact
Analysis and Simulation, IEEE Intl. Conference on
Robotics and Automation, May 1998

[17] D. E. Muller, F.P.Preparata: “Finding the intersection
of two convex polyhedra”, Theoretical Computer Sci-
ence, 7(2), pp.217-236 1978

[18] Personal communication from T. Kano,
http://cgi3.tky.3web.ne.jp/ tkano/, 2000

[19] D. Baraff: “Coping with friction for non-penetrating
rigid body simulation”, Computer Graphics 25(4),
pp.31-40, 1991

[20] Peter R. Kraus and Vijay Kumar, “Compliant Con-
tact Models for Rigid Body Collisions”, 1997 Proc. of
IEEE Intl. Conference on Robotics and Automation,
April 1997, pp.1382-1387

[21] M. Ishii, M. Sato: A 3D Spatial Interface Device Us-
ing Tensed Strings, PRESENCE (MIT Press Journal),
Vol.3, No.1, pp.81-86 (1994)

[22] K. Seahak, S. Hasegawa, Y. Koike, M. Sato, “Tension
Based 7-DOF Force Feedback Device: SPIDAR-G”,
Proceedings of the IEEE Virtual Reality 2002


